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Abstract
In this paper a novel method for speaker adaptive training
(SAT), based on Gaussian mean offset adaptation, so called
Shift-MLLR, is presented. The method differs from previous
SAT methods, where linear transformations of Gaussian means
or features are utilized, in that only an offset vector is used for
adaptation, but instead the number of regression classes is in-
creased. This is shown to allow an efficient implementation.
Furthermore, the use of word posterior confidence measures
for Shift-MLLR is investigated, also in combination with the
proposed SAT method. The presented methods are integrated
into a state of the art speech recognition system, and perfor-
mance is contrasted with Shift-MLLR without SAT, as well as
with MLLR. Large and consistent improvements in word er-
ror rate are observed from the new SAT method, as well as
from confidence based Shift-MLLR. The combination of the
new speaker adaptive training method with confidence based
estimation show consistent improvements.
Index Terms: speech recognition, speaker adaptation, speaker
adaptive training

1. Introduction
Speaker adaptation is an important method for improving
acoustic models in speech recognition. For each speaker en-
countered in recognition, the acoustic model is refined by taking
into account acoustic data from that particular speaker. Widely
used is affine transform based maximum likelihood (ML) model
adaptation, especially the so called maximum likelihood linear
regression (MLLR) method [1], where the acoustic model is
adapted by applying affine transforms to the means of the Gaus-
sian emission models.

Speaker adaptive training (SAT) is an important method
to maximize the performance gains from speaker adaptation.
While speaker adaptation already compensates for speaker dif-
ferences during recognition, the idea in SAT is to do the
same during acoustic model training. This is especially impor-
tant when using training data with large diversity in speakers
and recording conditions. Speaker adaptive training has been
showed to yield important improvements to the quality of the
acoustic model, see [2] for an overview of the topic.

MLLR based speaker adaptive training was originally pro-
posed in [3], and shown to yield improvements in recognition
performance. In its original form it requires a large amount
of memory compared to standard acoustic model training, and
is not straightforward to combine with discriminative training.
Due to these issues, the use of MLLR based SAT is not com-
mon. In contrast to this, SAT using so called constrained MLLR
(CMLLR), while delivering approximately the same perfor-
mance improvement in equivalent conditions [4], is straightfor-
ward to combine with standard (ML), and discriminative train-

ing, especially in the case of a single global transform (per
speaker) where it can be performed completely in feature space.
Due to this, its inclusion in state of the art systems is common,
while MLLR based SAT is hardly used to our knowledge.

Applying CMLLR adaptation with multiple (state depen-
dent) regression classes can not be done completely in feature
space, since the choice of transformation matrix depends on the
actual state used in the acoustic model. Thus, to make use of
such a setup in speaker adaptive training, the actual core train-
ing algorithm needs to be slightly modified. Probably due to
this, multiple regression classes are not normally used with CM-
LLR SAT in state of the art systems. In [4], multiple regression
classes were used only in recognition.

2. Shift-MLLR
In MLLR adaptation, the model means are adapted using an
affine transform, that is a combination of a linear transform (de-
formation and rotation) and an additive offset. The means of the
acoustic model are organized into (state dependent) regression
classes, where the means in the same regression class share an
adaptation matrix. The use of multiple regression classes is in
effect a nonlinear aspect of the model, although limited since
the number of classes are typically low.

In [5], this nonlinear modeling aspect of regression classes
was further investigated. Instead of using an affine transform
per regression class, only a simple offset was utilized. Since
this is more robustly estimable, the number of regression classes
could be dramatically increased. The number of regression
classes was chosen dynamically as in tree basedMLLR [6]. The
authors of [5] call their approach Shift-MLLR, and this term is
used in this paper for the combination of mean offset adaptation
with regression classes chosen as in tree MLLR. The recogni-
tion performance of this setup was shown to be practically iden-
tical to that of tree-basedMLLR, when both methods were com-
bined with CMLLR based speaker adaptive training. The use of
offsets (biases) on features or mean vectors for adaptation is not
new, and has been utilized in [7] for condition adaptation.

In this work the approach suggested in [5] is used. The off-
sets are formulated as a model transform, a speaker dependent
additive offset br,c applied to each mean vector μs,

μ′s = μs + br,c, (1)

where s the state, r is the speaker, and c is a state dependent
regression class.

The estimation of the offset vectors are done with maximum
likelihood, using expectation maximization (EM). The auxiliary
function with respect to both adaptation- and acoustic model
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parameters is given by
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Keeping acoustic model parameters fixed results in a closed
form re-estimation update formula for the offset br,c;
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where the summation over states go over all states belonging to
regression class c. Using diagonal covariance matrices, this ex-
pression reduces to a component-wise form. With a single glob-
ally pooled diagonal covariance, as used in the present work, the
formula simplifies to

b̂r,c =
1

T

TX
t=1

X
s∈c

γs(t)(xt − μs). (4)

Furthermore, in the system used in the present work, the Viterbi
approximation for EM estimation is utilized, and the estimation
equation is further simplified by the fact that only one state is
active at each time frame.

The number of regression classes are chosen dynamically
using the same method as for tree MLLR [6], but with much
fewer required observations per regression class, since offsets
are more robust to estimate than affine transforms. The number
of regression classes per speaker vary according to the amount
of adaptation data; in the experiments performed as part of the
present work the number mostly fall in the range between 500
and 2000 classes.

2.1. Use for Speaker Adaptive Training

Since Shift-MLLR shows performance equivalent to MLLR
when used in recognition, it is especially attractive due to the
simple form of the Shift-MLLR transforms to consider using
it for speaker adaptive training. The hope is to gain the im-
provements of MLLR based SAT, while allowing for efficient
implementation and combination with discriminative training
methods.

To use Shift-MLLR for speaker adaptive training, we use
Eq. (2) to derive re-estimation equations for the model param-
eters, with adaptation offsets kept fixed. This can be done in
complete analogy to the standard ML acoustic model case, and
result in

μ̂s =
1

T

TX
t=1

γs(t)(xt − br,c), (5)

Σ̂s =
1

T

TX
t=1

γs(t)(xt − br,c − μ̂s)(xt − br,c − μ̂s)
T . (6)

As can be seen, the form of the re-estimation equations are sim-
ilar to those of the non SAT case, with the difference that the
offset br,c is subtracted from the feature vector xt.

Due to this similarity, the needed modifications to the train-
ing software are limited. When using Viterbi approximation,
as is the case in the RWTH system, only one state is active for

each time frame, and the regression class can be chosen from
the frame state alignment, and the offset directly applied to the
feature vector. This allows isolating the difference between the
SAT training and the standard acoustic model training to the fea-
ture extraction, thus putting the complete implementation in the
feature extraction front end, leaving the actual training software
unmodified.

2.2. Target Model for SAT

In classical SAT training, as presented in [3], acoustic model pa-
rameters, and adaptation parameters are jointly estimated on the
training set, using interleaved re-estimation. In [8] alternatives
to this approach are investigated, and a variant where the adap-
tation parameters are estimated once, followed by a complete
re-training of the acoustic model parameters from scratch was
demonstrated to yield better performance. It was also demon-
strated that better performance was achieved by not using the
real, optimal (up until that time) acoustic model in the esti-
mation of the adaptation parameters, but instead use a coarser
model, a so called simple target model.

As a tentative explanation or at least motivation for this
result it is suggested that since a large, fully trained, acoustic
model already captures much of the speaker variation, less room
is left for improvements from adaptation. Since this results in
adaptation of lower quality, the subsequent re-estimation of the
model based on this adaptation also is of lower quality. When
starting from a less complex model, on the other hand, almost
no speaker specific information is contained in the model, lead-
ing to adaptation of better quality, and thus a better final model.

In this work, the approach using complete acoustic model
retraining after estimating the adaptation offsets is used for all
experiments. Different target models of varying complexity are
used.

2.3. Estimation Using State Posterior Confidence Measures

In unsupervised adaptation, as typically used in state of the art
transcription systems, the adaptation parameters are estimated
using the output from a previous unadapted recognition step as
ground truth. This means that the data on which the parameters
are optimized will contain errors. One strategy to counter this
is to apply confidence measures to select (or to weight) what
portions of the automatic first pass transcription should be used
for the estimation.

Many publications have shown that the application of con-
fidence scores for adaptation estimation can improve recogni-
tion results. Small improvements for confidence based CMLLR
adaptation is reported in [9]. In [10] the authors have investi-
gated lattice-based MLLR applying a confidence threshold and
report 2% relative improvement in word error rate (WER) over
the 1-best transcription. In [11] 5% relative improvement is re-
ported for MLLR adaptation by performing word confidence
selection from the 1-best transcription.

In automatic speech recognition confidence scores can be
developed and optimized for different units like utterances,
words, phonemes or states. For acoustic model adaptation it
makes sense to focus on the tied state label since distributions
are associated with these units. Instead of rejecting an entire
utterance or word, the system can use state confidence scores
to select state-dependent data. State confidence scores are ob-
tained from computing arc posteriors from the lattice output
from the decoder. The arc posterior probabilities can be com-
puted efficiently using the forward-backward algorithm as, for
example, described in [12, 13]. For further details on the meth-
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ods used for computation of state posterior confidence mea-
sures, see [14].

2.4. Combination with Discriminative Training

Due to the simple structure of the Shift-MLLR transformation,
the combination of Shift-MLLR SAT with discriminative train-
ing is relatively straightforward. Instead of using an expecta-
tion maximization auxiliary function, the generalized auxiliary
function as in normal discriminative training can be used. The
difference compared to the normal re-estimation equations us-
ing common discriminative criteria, such as maximum mutual
information (MMI) and minimum phone error (MPE) consist in
the same subtraction of the offset br,c from the feature vector as
in the ML case.

While in the maximum likelihood case the use of Viterbi
training allows to perform this subtraction in the front end, the
discriminative criteria, even when using Viterbi approximation,
require competing states to be active in the same time frame.
Due to this, the implementation of Shift-MLLR SAT for dis-
criminative criteria requires modifying the core discriminative
training software to a limited extent. Experimental work on
Shift-MLLR SAT with discriminative criteria is not included in
the present work, and will be part of future work.

In CMLLR SAT, using discriminative criteria often only the
model is re-estimated using the discriminative criterion, while
the CMLLR matrix continues to be estimated using maximum
likelihood - especially when unsupervised adaptation is to be
performed in recognition; results presented in [15] show no ad-
vantage to using the discriminative criteria for adaptation esti-
mation. To what extent this approach is preferable for Shift-
MLLR SAT compared to also estimating the offsets using dis-
criminative criteria, must be investigated experimentally.

3. Experimental Results
The recognition experiments were performed using one of the
systems developed for the TC-STAR 2007 evaluation as base-
line [16]. All experiments were performed on the English TC-
STAR 2006 development and evaluation data sets. The acous-
tic training material includes 88 hours of manually transcribed
recordings. The development and evaluation sets each consist
of 3.2 hours of recordings. The system used a MFCC front-end
augmented with a single voicedness feature, and the acoustic
models used consisted of roughly 900k Gaussians sharing a sin-
gle globally pooled covariance. Furthermore, in all experiments
a one pass VTLN method, using a classifier for warping factor
estimating, was used.

The baseline system furthermore included speaker adaptive
training using dimension reducing feature transforms, as pre-
sented in [17], called FMLLRP here. FMLLRP SAT is similar
to CMLLR SAT using one regression class, but was shown to
give consistent improvements in error rate. Adaptation was per-
formed unsupervised, using two or three recognition passes. For
two-pass recognition both FMLLRP and Shift-MLLR orMLLR
adaptors were estimated on the first pass output, while in three-
pass recognition, only FMLLRP matrices were estimated using
first pass output, and the output of a second pass FMLLRP SAT
recognition was used to estimate Shift-MLLR or MLLR adap-
tors for a third recognition pass. Both MLLR and Shift-MLLR
were performed using dynamic tree based regression classes.

Table 1 show word error rate (WER) for MLLR, Shift-
MLLR and Shift-MLLR SAT, both using two pass and three
pass setups. As can be seen there is a notable improvement due

Table 1: SAT shift results.

Dev06 Eval06

1st pass 16.3 13.2

FMLLRP SAT 14.2 10.5

MLLR 13.1 10.0

MLLR 3-pass 13.2 10.1

Shift 13.0 10.1

Shift 3-pass 13.2 10.2

SAT-Shift 12.5 9.9

SAT-Shift 3-pass 12.4 9.6

to speaker adaptive training using Shift-MLLR, especially when
doing three pass recognition. Note that for MLLR, as well as for
Shift-MLLR without SAT, there is no improvement from three
pass recognition.

Table 2: Target model influence.

Dev06 Eval06

Simple 12.4 9.6

Full 12.6 9.6

In Table 2, the influence of different types of target mod-
els for Shift-MLLR SAT, as discussed in Sec. 2.2 is presented.
As expected from experiences with VTLN and CMLLR SAT,
the simpler single Gaussian target model show slightly better
performance, compared to the full model.

Table 3: Results using state posterior confidences.

Dev06 Eval06

MLLR 13.2 10.1

MLLR Conf. 12.9 9.8

Shift 13.2 10.2

Shift Conf. 12.7 9.6

MAP 14.1 10.5

MAP Conf. 13.0 9.8

SAT-Shift Full 12.6 9.6

SAT-Shift Full Conf. 12.5 9.4

SAT-Shift Reduced 12.4 9.5

SAT-Shift Reduced Conf. 12.2 9.4

SAT-Shift Simple 12.5 9.5

SAT-Shift Simple Conf. 12.3 9.3

Table 3 summarizes the results (WER) when applying state
confidence measures as discussed in Sec. 2.3 to adaptation esti-
mation; Shift-MLLR with and without SAT, as well as MLLR.
Since results in [14] show competitive results for confidence
based maximum a posteriori adaptation (MAP), this is also in-
cluded for comparison. Note that the experiments were all done
using three pass adaptation. Here further experiments where
conducted to investigate the influence of the target model. Three
models were used: A single Gaussian unadapted model (Sim-
ple), a CMLLR SAT estimated model with approximately 70k
Gaussians (Reduced), and the full CMLLR SAT model with
about 900k Gaussians (Full). Due to the implementation of
confidence measures in the system used for this experiment, the
frame state alignments must be computed with the same acous-
tic model as used to compute confidence measures, where the
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full model should be used. To remain consistent, for all results
in Table 3 the full model was used for the alignment in Shift-
MLLR estimation, both in training and recognition, while the
actual target model was used in accumulation. This explains
the slight differences in results compared to the previous exper-
iment.

Significant improvements from confidence measures can be
seen for the cases of MLLR as well as for Shift-MLLR without
SAT. The improvements from confidence measures are consis-
tently larger in the case of Shift-MLLR compared to MLLR;
this is consistent with results from [14], where MAP adapta-
tion was shown to benefit more from confidence measures than
MLLR. When combining confidence based estimation with
Shift-MLLR SAT, the improvements are small but consistent.
The effect of using different target models remains limited, but
it appears that the use of the full acoustic model as target model
for SAT is not optimal.

4. Discussion
It is clear from the presented results that Shift-MLLR SAT rep-
resents an attractive method for improving a state of the art
speech recognition system. The large improvements achieved
- in the same range as improvements from MPE discriminative
training (c.f. [16], the system used in the current work is sub-
system S1) - combined with the ease of implementation, makes
the presented method a good candidate for inclusion into many
transcription systems.

About equally large improvements as those of Shift-MLLR
SAT, was achieved by using confidence measures for Shift-
MLLR estimation. The combination of the two methods has yet
to deliver more than small, though consistent, improvements.
The large improvements achieved in the non SAT case leads to
the hope that further investigations of modified approaches will
show advantages.

Although the combination of Shift-MLLR SAT and dis-
criminative training was not experimentally investigated in this
work, such a combination poses no theoretical or practical dif-
ficulties (c.f. Sec. 2.4). Furthermore, experience from the com-
bination of CMLLR SAT and discriminative training, where the
improvements are known to be essentially additive, encourages
further investigation in this direction.

5. Conclusions
In this work, a novel method for speaker adaptive training us-
ing Shift-MLLR was presented. Re-estimation equations for
the adaptation and for the acoustic model based on expectation
maximization were presented, and an efficient implementation
was described. The use of state posterior confidence measures
in combination with Shift-MLLR and the proposed method was
described. Results were presented combining Shift-MLLR SAT
with CMLLR SAT, and its performance was contrasted with that
of Shift-MLLR without SAT, as well as with MLLR, and large
improvements in word error rate were observed. Results us-
ing confidence measures for Shift-MLLR also showed large im-
provements. When combining confidence measures with Shift-
MLLR SAT consistent improvements were still observed.

Future work includes further investigations into the combi-
nation of Shift-MLLR SAT with confidence measures. Further-
more the combination of Shift-MLLR SAT with discriminative
training needs to be investigated in detail. Though the influence
of the target model remains inconclusive, further improvements
might be achieved by choosing or estimating a target model that

is optimal for SAT estimation. One limitation of the present
work is that no comparison or combination is performed be-
tween Shift-MLLR SAT and CMLLR SAT using multiple re-
gression classes. This could be rectified in future work.

6. References
[1] C. J. Leggetter and P. C. Woodland, “Maximum likelihood lin-

ear regression for speaker adaptation of continuous density hidden
markov models,” Computer Speech and Language, vol. 9, no. 2,
pp. 171 – 185, Apr. 1995.

[2] M. J. F. Gales, “Adaptive training for robust ASR,” in Proc.
IEEE Automatic Speech Recognition and Understanding Work-
shop, Madonna di Campiglio, Italy, Dec. 2001, pp. 15 – 20.

[3] T. Anastasakos, J. McDonough, R. Schwartz, and J. Makhoul, “A
compact model for speaker-adaptive training,” in Proc. Int. Conf.
on Spoken Language Processing, vol. 2, Philadelphia, PA, USA,
Oct. 1996, pp. 1137 – 1140.

[4] M. J. F. Gales, “Maximum likelihood linear transformations for
HMM-based speech recognition,” Computer Speech and Lan-
guage, vol. 12, no. 2, pp. 75 – 98, Apr. 1998.

[5] D. Giuliani and F. Brugnara, “Acoustic model adaptation with
multiple supervisions,” in Proc. TC-STAR Workshop on Speech-
to-Speech Translation, Barcelona, Spain, Jun. 2006, pp. 151–154.

[6] C. Leggetter and P. Woodland, “Flexible speaker adaptation us-
ing maximum likelihood linear regression,” in Proc. ARPA Spoken
Language Technology Workshop, Austin, TX, USA, Jan. 1995, pp.
104 – 109.

[7] A. Sankar and C.-H. Lee, “A maximum-likelihood approach to
stochastic matching for robust speech recognition,” IEEE Trans.
on Speech and Audio Processing, vol. 4, no. 3, pp. 190–202, May
1996.

[8] G. Stemmer, F. Brugnara, and D. Giuliani, “Adaptive training us-
ing simple target models,” in Proc. IEEE Int. Conf. on Acoustics,
Speech, and Signal Processing, vol. 1, Philadelphia, PA, USA,
Mar. 2005, pp. 997 – 1000.

[9] T. Anastasakos and S. V. Balakrishnan, “The use of confidence
measures in unsupervised adaptation of speech recognizers,” in
Proc. Int. Conf. on Spoken Language Processing, vol. 6, Sydney,
NSW, Australia, Dec. 1998, pp. 2303–2306.

[10] M. Padmanabhan, G. Saon, and G. Zweig, “Lattice-based unsu-
pervised MLLR for speaker adaptation,” in Proc. ISCA Automatic
Speech Recognition Workshop, Paris, Sep. 2000, pp. 128–132.

[11] M. Pitz, F. Wessel, and H. Ney, “Improved MLLR speaker adapta-
tion using confidence measures for conversational speech recogni-
tion,” in Proc. Int. Conf. on Spoken Language Processing, vol. 4,
Beijing, China, Oct. 2000, pp. 548 – 551.

[12] F. Wessel, R. Schlüter, K. Macherey, and H. Ney, “Confidence
measures for large vocabulary continuous speech recognition,”
IEEE Trans. on Speech and Audio Processing, vol. 9, no. 3, pp.
288 – 298, Mar. 2001.

[13] T. Kemp and T. Schaaf, “Estimating confidence using word lat-
tices,” in Proc. European Conf. on Speech Communication and
Technology, vol. 2, Rhodes, Greece, Sep. 1997, pp. 827 – 830.

[14] C. Gollan and M. Bacchiani, “Confidence scores for acoustic
model adaptation,” in Proc. IEEE Int. Conf. on Acoustics, Speech,
and Signal Processing, Las Vegas, NV, USA, Mar. 2008, pp.
4289 – 4292.

[15] L. Wang and P. C. Woodland, “Discriminative adaptive training
using the MPE criterion,” in Proc. IEEE Automatic Speech Recog-
nition and Understanding Workshop, St. Thomas, U.S. Virgin Is-
lands, Dec. 2003, pp. 279 – 284.

[16] J. Lööf, C. Gollan, S. Hahn, G. Heigold, B. Hoffmeister, C. Plahl,
D. Rybach, R. Schlüter, and H. Ney, “The RWTH 2007 TC-STAR
evaluation system for European English and Spanish,” in Proc.
Int. Conf. on Spoken Language Processing, Antwerp, Belgium,
Aug. 2007, pp. 2145 – 2148.

[17] J. Lööf, R. Schlüter, and H. Ney, “Efficient estimation of speaker-
specific projecting feature transforms,” in Proc. Int. Conf. on Spo-
ken Language Processing, Antwerp, Belgium, Aug. 2007, pp.
1557 – 1560.

1704


	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Multimedia File Index
	------------------------------
	Abstract Book
	Abstract Card for this Manuscript
	------------------------------
	Next Manuscript
	Preceding Manuscript
	------------------------------
	Previous View
	------------------------------
	Search
	------------------------------
	Also by Jonas Loof
	Also by Christian Gollan
	Also by Hermann Ney
	------------------------------

